SOCIETY FOR BRAIN MAPPING AND THERAPEUTICS

SOCIETY FOR BRAIN MAPPING AND THERAPEUTICS

BREAKING BOUNDARIES OF SCIENCE, TECHNOLOGY, MEDICINE, ART & HEALTHCARE POLICY

Search
Close this search box.

Pegah Khosravi

About

My research focuses on the development of machine learning techniques and AI-based models for the innovation of medical data analysis. I am an Assistant Professor at New York City College of Technology (City Tech) and teach Biomedical Data Analytics. Also, I serve as Deputy Editor of the Journal of Magnetic Resonance Imaging (JMRI).

Education:

Ph.D., Bioinformatics, 2014

  • Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran
  • Thesis Title: “Dynamical analysis of cellular networks via studying interaction and hub types

Courses Taught at City Tech:

  • BIO 3450: Biomedical Data Analysis I
  • BIO 4450: Biomedical Data Analysis II
  • BIO 4550: Biomedical Informatics Colloquium

Research Interests:

  • Artificial Intelligence
  • Bioinformatics/Computational Biology
  • Cancer Research
  • Deep Learning
  • Machine Learning
  • Medical Data Analysis
  • Pathology and Radiology Image Analysis

Current and Previous Appointments:

Assistant Professor (2022-present)
Department of Biological Sciences, New York City College of Technology, CUNY, NY, USA.

Deputy Editor (2020-present)
Journal of Magnetic Resonance Imaging (JMRI): New Developments and Future Direction, NY, USA.

Sr II Computational Biologist (2020-2022)
Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, NY, USA.

Postdoctoral Associate (2017-2020)
Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medical College, NY, USA.

Postdoctoral Research Fellow (2014-2017)
School of Biological Sciences of Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.

Visiting Researcher (2012-2013)
Donnelly Center for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.

Representative Publications:

Khosravi P., Lysandrou, M., Eljalby, M., Brendel, M., Li, Q., Kazemi, E., Zisimopoulos, P., Sigaras, A., Barnes, J., Ricketts, C., Meleshko, D., Yat, A., McClure, T. D., Robinson, B. D., Sboner, A., Elemento, O., Chughtai, B., Hajirasouliha, I., A Deep Learning Approach to Diagnostic Classification of Prostate Cancer Using Pathology–Radiology Fusion, Journal of Magnetic Resonance Imaging, 54 (2021).

Boehm K. M., Khosravi P., Vanguri R., Gao J., Shah P. S., Harnessing multimodal data integration to advance precision oncology, Nature Reviews Cancer (2021), 22: 114-126.

Xu, Z., Verma, A., Naveed, U., Bakhoum, S., Khosravi P., Elemento, O., Using Histopathology Images to Predict Chromosomal Instability in Breast Cancer: A Deep Learning Approach, Iscience (2021), 3;24(5).

Asgari, Y., Khosravi P., Flux variability analysis reveals a tragedy of commons in cancer cells, SN Applied Sciences (2020), 2:1966.

Khosravi, P., Kazemi, Zhan, Q., Toschi, M., Malmsten, J., Cooper, L., Hickman, C., Meseguer, M., Rosenwaks, Z., Elemento, O., Hajirasouliha I., Deep Learning Enables Robust Assessment and Selection of Human Blastocysts after In-vitro Fertilization, npj digital medicine-Nature (2019), 4;2:21.

Khosravi, P., Kazemi, E., Imielinski, M., Elemento, O., Hajirasouliha I., Deep Convolutional Neural Networks Enable Discrimination of Heterogeneous Digital Pathology Images, EBioMedicine (2018), 27: 317-328.

Habibi, M., Khosravi, P., Disruption of the Protein Complexes from Weighted Complex Networks, IEEE/ACM transactions on computational biology and bioinformatics (2018).

Asgari, Y., Khosravi, P., Zabihinpour, Z., Habibi, M., Exploring candidate biomarkers for lung and prostate cancers using gene expression and flux variability analysis, Integrative Biology (2018), 10:113-120.

Aghdam, R., Baghfalaki, T., Khosravi, P., Ansari, E. S., The Ability of Different Imputation Methods to Preserve the Significant Genes and Pathways in Cancer, Genomics, Proteomics & Bioinformatics (2017), 15: 396-404.

Emamjomeh A., Robat E. S., Zahiri J., Solouki M., Khosravi P., Gene co-expression network reconstruction: a review on computational methods for inferring functional information from plant-based expression data, Plant Biotechnology Reports (2017), 1:6.

Aghdam, R., Khosravi, P., Ansari, E. S., Comparative Analysis of Gene Regulatory Networks Concepts in Normal and Cancer Groups, Bioinformatics and Biocomputational Research (2016), 1: 42-45.

Khosravi P., Gazestani V.H., Pirhaji L., Law B., Sadeghi M., Bader G., Goliaei B., Inferring interaction type in gene regulatory networks using co-expression data, Algorithm for molecular Biology (2015), 10:23.

Khosravi P., Gazestani V.H., Asgari Y., Law B., Sadeghi M., Goliaei B., Network-based approach reveals Y chromosome influences prostate cancer susceptibility, Computers in Biology and Medicine (2014), 54:24-31.

Hosseinpour B., Bakhtiarizadeh M.R., Khosravi P., Ebrahimie E., Predicting distinct organization of transcription factor binding sites on the promoter regions; a new genome-based approach to expand human embryonic stem cell regulatory network. Gene (2013), 531:212-9.

My Google Scholar:

https://scholar.google.com/citations?user=lHM6ZCwAAAAJ&hl=en&oi=ao